On the generalized (edge-)connectivity of graphs
نویسندگان
چکیده
The generalized k-connectivity κk(G) of a graph G was introduced by Chartrand et al. in 1984. It is natural to introduce the concept of generalized k-edge-connectivity, λk(G). For general k, the generalized k-edgeconnectivity of a complete graph is obtained. For k ≥ 3, tight upper and lower bounds of κk(G) and λk(G) are given for a connected graph G of order n, namely, 1 ≤ κk(G) ≤ n− k2 and 1 ≤ λk(G) ≤ n− k2 . Moreover, graphs of order n such that κk(G) = n− k2 and λk(G) = n− k2 are characterized. Nordhaus-Gaddum-type results for the generalized kconnectivity are also obtained. For k = 3, we study the relation between the edge-connectivity and the generalized 3-edge-connectivity of a graph. Upper and lower bounds of λ3(G) for a graph G in terms of the edgeconnectivity λ of G are obtained, that is, 3λ−2 4 ≤ λ3(G) ≤ λ, and two graph classes are given showing that the upper and lower bounds are tight. From these bounds, we obtain λ(G) − 1 ≤ λ3(G) ≤ λ(G) if G is a connected planar graph, and we also obtain the relation between the generalized 3-connectivity and generalized 3-edge-connectivity of a graph and its line graph.
منابع مشابه
On the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کاملA Survey on Complexity of Integrity Parameter
Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including toughness, binding number, rate of disruption, neighbor-connectivity, integrity, mean integrity, edgeconnectivity vector, l-connectivity and tenacity. In this paper we discuss Integrity and its properties in vulnerability calculation. The integrity of a graph G, I(G), is defined t...
متن کاملSufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
متن کاملGraceful labelings of the generalized Petersen graphs
A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...
متن کاملA note on polyomino chains with extremum general sum-connectivity index
The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 58 شماره
صفحات -
تاریخ انتشار 2014